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Abstract 

 The present paper discussed the Einstein- Cartan field equations taking the static cylindrically symmetric 

perfect fluid distribution under different conditions. The constants appearing in the solution have been calculating 

using Licknerowicz boundary conditions. 
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1   INTRODUCTION. 

In this study we discussed Einstein-Cartan theory which attempts to incorporate the spin density (or 

polarization) of a material medium into the field equations. Spherically symmetric interior solution in Einstein-Cartan 

theory were reported by Prasanna [15], Kerlick [6] and Kuchowicz [10-11] and Skinner and Webb [18]. Singh and 

Yadav  [17] have also obtained static fluid spheres in Einstein-Cartan theory.Some other workers in this line are Suh 

[19] , Banerji [2], Arkuszewskiwski [1], Krori et .el.[8], Kopezynski [7]. However, since in spherical symmetry it is 

assumed that spins are all aligned in radial direction (implying the presence of a magnetic monopole at the centre) 

the picture is not very physical. Again, since a rotating system cannot be spherical, it is necessity to consider 

axisymmetric distributions which are more physical. In this connection Prasanna [16] has studied the simplest 

axisymmetric system namely a static cylinder of perfect fluid composed of particles having their spins aligned along 

the symmetric axis. 

In this paper, we have solved the Einstein- Cartan field equations taking the static cylindrically symmetric 

perfect fluid distribution under different conditions. We have assumed the spins to be aligned along the symmetry 

axis. We have also evaluated pressure and density for the distribution. The constants appearing in the solution have 

been found using Licknerowicz boundary conditions. 
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2. THE FIELD EQUATIONS: 

We take the static cylindrically symmetric metric given by 

(2.1)    ,2222222222 dtederdzdreds      

where  & are functions of r alone. 

We have then the orthonormal tetrad 

(2.2)         dtedzedredre     4321 ,,,  

The metric (2.1) now becomes, 

(2.3)   ds2 =  24232221 )()()()(    

So that,  1,1,1,1  diaggij
 

The Einstein- Cartan field equations are 
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where 
i

jt  is canonical asymmetric energy momentum tensor Rij is Ricci tensor, R is scalar of curvature, and 
i

jkS  and 

i

jkQ are spin and torsion tensors. 

The classical description of spin is defined by the relation, 

(2.6)   0 k

jkjk

ii

jk uwithSSuS  

where ui is the velocity four vector and Sij is the intrinsic angular momentum tensor. 

We suppose that spins of the particles composing the fluid area all aligned along the symmetry axis (Z-axis). 

Therefore the only non-zero components of spin tensor Sij are 

(2.7)  S12 =  -S21 = K (say). 

Also since the fluid distribution is static, the velocity four vector 
iiu 4 and hence the non-zero components 

of 
i

jkS are 
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Therefore from Cartan’s equation (2.5), we have the non- zero components of torsion tensor 
i

jkQ to be 
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For the system under study the canonical asymmetric energy momentum tensor 
i

jt is given by 
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i

jT being the symmetric energy momentum tensor. Considering the perfect fluid material distribution with 

anisotropic pressure, the symmetric tensor 
i

jT  is given by 

(2.11)    ,,, zr

i

j pppdiagT  . 

Consequently the non- zero components of the canonical tensor 
i

jt are 
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From    (2.4) & (2.12) the field equations may be written as 
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(2.17)         keKKKe2  
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Adding (2.17) & (2.18) we get, 

(2.19)  0 KK which on integration yields 

(2.20)  
 eAK 1  where A1 is an arbitrary constant to be determined. The conservations equation for j =1 gives the 

continuity equation. 
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It can be easily verified that the equation (2.21) may be obtained directly as a consequence of the field equations. 
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3 Solution of the field equations: 

Following Hehl’s [3,4] approached by redefining pressure and density as 

(3.1)   22 2,2 KKpp    

The field equations reduce to 

(3.2)    
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Also the continuity equation becomes 
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We have only three independent equations to determine five unknowns. Thus the system is indeterminate, we 

require two more conditions. 

Case I 

Here we assume an equation of state of the form 

(3.6)  
rpa  

 where ‘a’ is a constant. This gives an additional equation 
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Since our set of equation is still incomplete, we will take a suitable choice of one of the metric coefficients. 

For this we assume, 
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were b1 & b2 are constants. With this value of  ,equation (3.7) becomes 
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we have 
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Equation (3.10) is a linear differential equation in  &r. Its solution is given by 

(3.11) 
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where c1 is constant of integration. Integration of (3.11) gives 
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(3.12)  
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where c2 is another constant of integration. 

Now we have four arbitrary constants b1,b2,c1&c2 which are to be determined by the boundary conditions .If 

we take r=r0 to be radius of the cylinder, we have for r>r0 (i.e for outside the cylinder ) the equation Rij = 0 (empty 

space). A well known solution for Einstein equations for empty space with cylindrical symmetry is that given by 

Levi- Civita [21]which  is given as 

(3.13)       2221222122 dtrdrdzdrArds cccc     

where c & A are constants. We use Licknerowicz boundary conditions, namely that metric potentials are 

continuous across the surface r = r0 .Thus the continuity of  ,  and  ,  

gives 
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Thus we have for the interior of the cylinder, the solution 

(3.18)  

 
 

    
 

 
 

 
 

 
  312

92

7
loglog

2

1
1

78

1

1
38

15

312

92

7

0

2

0

28

0

2

41

0
































 

aa

ac

ra

c
rcA

ra

ac

a

c

aa

a

ra

c
c a

 

(3.19)   
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Also pressure and density are found to be 

(3.20) 
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CASE   II 

Here we choose 

(3.23)  z
pa  

Then we get an additional equation 
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Also we assume   same as in case I i.e. 
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Using (3.25) equation (3.24) becomes 
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which is linear differential equation in p & r. Its solution is 
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where 


1c is constant of integration. Integration of (3.28) gives 
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(3.29)  
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Where 


2c is another constant of integration As in case I , using boundary conditions we can find the constants 


2121 ,,, ccbb and also pressure and density can be written similarly. 
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